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The small Hankel operator in several complex 
variables 

Bernard Russo 

Abstract. A survey of known results and open problems concerning bounded­
ness, compactness, and trace ideal membership of the small Hankel operator. 
The setting is either the Bergman or Hardy space over a bounded symmetric 
domain or a strongly pseudoconvex domain in several complex variables, with 
special attention to the unit polydisk and multivariable harmonic analysis. 
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This expository paper attempts to give the status of research on small Hankel 
operators in several complex variables insofar as it is concerned with certain basic 
problems for operators associated with a symbol. Although it is primarily about 
small Hankel operators on Hardy spaces, the Bergman spaces and big Hankel 
operators are also mentioned. Hankel operators, Toeplitz operators, and composi­
tion operators are at the center of the study of certain aspects of contemporary 
operator theory in function spaces. For any of these operators, one can consider 
the following problems: characterize the symbols for which the operator with that 
symbol is bounded, compact, or in a Schatten p-class. In this note we consider 
these problems for the small Hankel operator. 

Hankel operators are of interest in pure and applied operator theory. They 
appear in the following contexts, to name a few (for the first three, see [39]): 

• HOC control theory (engineering) 
• interpolation problems (Nevanlinna-Pick,Caratheodory-Fejer) 
• approximation theory 
• noncommutative geometry (quantum Hall effect,[8]) 
• lib equation ([1]) 

This paper contains three sections. Section 1 gives the background on the 
types of function spaces, domains, and operators of interest, and poses the prob­
lems to be discussed in later sections. The literature for the Bergman space versions 
of our problems is discussed here. In Section 2, the state of affairs regarding the 
Hardy spaces of the unit ball is discussed. Also in that section, the known results 
for the Hardy spaces of the unit disk are given. Most of these, as well as references 
to results on more general domains, are given in the monograph [62] so they are 
only mentioned briefly here without much discussion. Section 3 is an exposition 
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of the multiparameter harmonic analysis as it applies to the study of the small 
Hankel operator on the polydisk, which is also presented there. 

1. Preliminaries 

1.1. Bergman and Hardy spaces 

Let D be a domain in en. The Bergman space is the set of all holomorphic functions 
on D which are p-integrable with respect to Lebesgue volume measure dV on 
en = R2n : 

AP(D) c P(D, dV) 0< p < 00. 

AP(D) is a closed subspace of £p(D, dV). When n = 1, we use the notation dA 
for dV. The Hardy space 1{P(D), 0 < p < 00, as well as the embedding 1{P(D) C 
£P(8D) are a little more complicated. We begin with three familiar cases. For any 
function f and r > 0, let fr(z) = f(rz). 

In the following, dO /27r denotes normalized Lebesgue measure on the unit 
circle T = 81:::., a denotes a unique rotation invariant measure on the unit sphere 
8B, where B is the unit ball in en, and in the case of the unit polydisk I:::.n, 
r = (rl,··· ,rn) and 0 = (01,··· ,On), with obvious meanings for 0 < r < 1 and 
eiO in this case. 

• D = the unit disk: for a holomorphic function f on the unit disk I:::. = {z E 

e : Izl < I} and 0 < p < 00, f E 1{P(I:::.) if 

IlfllHp = sup r2rr Ifr(ei0)IP dOj27r < 00. 
o<r<llo 

• D = the unit ball: for a holomorphic function f on the unit ball B = {z = 
(Z1,··· ,zn) E en: L: IZjl2 < I} and 0 < p < 00, f E 1{P(B) if 

IlfllHP = sup r Ifr(()IP da(() < 00. 
O<r<d8B 

• D = the unit polydisk: for a holomorphic function f on the unit polydisk 
I:::.n c en and 0 < p < 00, f E 1{p(l:::.n) if 

IlfllHP = sup r Ifr( ei0)IP dOl· .. dOn /(27rt < 00. 
o<r<llTn 

In each of the above cases, any 1{P function f has nontangential boundary 
values f* almost everywhere, which belong to £P(8D) , and the map 

1{P ::3 f H f* E P(8D) 

is norm preserving ([28], [56], [55]). In fact, for any bounded domain in en with 
C2-boundary, f* exists, see [33, Ch. 8]. Moreover, in the two cases considered 
below, that is, bounded symmetric domains and strongly pseudo convex domains, 
the embedding 1{P(D) C £P(8D) is an isometry. 
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1.2. Domains of Interest 

We shall limit our attention in this paper to two types of domains, namely, bounded 
symmetric domains and especially the unit polydisk, and strongly pseudoconvex 
domains. Before discussing the definitions, we show how the Hardy spaces are de­
fined in each case. For a summary of an algebraic approach to bounded symmetric 
domains, see the survey paper [57]. 

A bounded symmetric domain can be defined as a domain in C n which is the 
open unit ball of a certain Banach space structure on Cn . This is because in finite 
dimensions, the bounded symmetric domains have been classified, first using Lie 
theory [12], and afterwards using Jordan theory [32], [48]. Namely, the underlying 
Banach spaces of all finite dimensional bounded symmetric domains are contained 
in the following list. We shall not specify the norms in the last three cases. For a 
fuller discussion, see [48] or [57]. 

• Mm,n(C): rectangular m by n complex matrices with the operator norm 
• Sn(C): symmetric n by n complex matrices with the operator norm 
• An(C): anti-symmetric n by n complex matrices with the operator norm 
• Spinn: the complex "spin factor" of dimension n 
• 116 : the "exceptional" complex Jordan triple system of dimension 16 
• 127 : the "exceptional" complex Jordan algebra of dimension 27 

In particular, we obtain the unit disk, unit ball, and unit polydisk, from M1,1, 

M1,n, and M1,1 x M1,1 X ••. X M1,1, respectively. 
For any bounded symmetric domain 0, there is a unique probability measure 

a on the Silov boundary 8* = 8*0, which is invariant under the action of the 
compact group of linear automorphisms of O. Since 0 is the open unit ball for a 
norm on Cn , the following definition makes sense for a holomorphic function f on 
o ([27]). 

For 0 < p < 00, f E 1{P(D) if 

IlfllHP = sup r Ifr(()IP da(() < 00. 
O<r<l Ja. 

A strongly pseudoconvex domain 0 is given by a defining function p : Cn ~ 

(0,00) with certain properties which will not be mentioned here: 0 = {z E C n : 

p(z) < O}. With O€ defined by {p < -E}, the conditions on p guarantee the 
existence of a surface area probability measure a€ on 80€ so the following definition 
makes sense ([33, Ch. 8]). For 0 < p < 00, f E 1{P(O) if 

The unit ball is an example of a bounded symmetric domain and of a strongly 
pseudo convex domain, the defining function given by p(z) = Izl2 - 1. 
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1.3. Operators of Interest 

The Bergman space A2(0) is a closed subspace of the Hilbert space L2(0) and its 
orthogonal projection (the Bergman projection) is given as an integral operator 
with kernel K(z, w) (the Bergman kernel). We shall denote this projection by P, 

PI(z) = kl(W)K(z,W)dV(W) ,IE L2(0), z E O. 

Similarly, the Hardy space 1{2(0) is a closed subspace of the Hilbert space 
L2(aO) and its orthogonal projection (the Szego projection) is given as an integral 
operator with kernel S(z, w) (the Szego kernel). We shall denote this projection 
by S, 

SI(z) = r l(w)S(z, w) du(w), 1 E L2(aO), z E O. 
Jao 

Let I: 0 -+ C (say 1 E L2) and define formally the following: 

Hankel operator Hf : A2 -+ A2.L:; Hf9 = (1 -P)(fg), 9 E A2, Ig E L2 

Small Hankel operator hf : A2 -+ A2:; hfg = P(fg), 9 E A2, jg E L2 

We make several remarks in connection with these definitions. The definitions 
above are for the operators on the Bergman space with p = 2. There is a corre­
sponding Hardy space operator in each case; replace 0 by a~, A2 by 1{2 and P 
by S. Although these operators can also be defined on AP and 1{P for 0 < p ~ 00, 

we shall restrict our attention to the Hilbert space case of p = 2. Both of these 
operators are densely defined, and the small Hankel operators are conjugate lin­
ear. The small Hankel operator is essentially the same as the Hankel operator only 
in the case of 1{2(/l), because 1{2(/l).L is one dimension away from 1{2(/l). It is 
sometimes convenient to consider these operators as acting from L2 into L2. 

The Bergman and Szego projections are important tools in the study of oper­
ator theory in function spaces, and indeed are instrumental in the very definition 
of Hankel operators. Let's give some explicit formulas for the Bergman and Szego 
kernels in the cases of interest to us. 

unit ball: ([33, p.60,66]), 

K( ) n! 1 z w = - -,-----,-__ 
, ll'n (1 - z . w)n+1 ' 

(n -I)! 1 
S( z, w) = ..!...-~ -:-------..,-

21l'n (1 - z· w)n 

strongly pseudoconvex domain: In this case, there is no explicit formula, but 
an asymptotic expansion due to C. Fefferman [22] allows one to transfer 
techniques known for the unit ball to this setting. 



The small Hankel operator in several complex variables 239 

unit polydisk: ([33, p.61,67j), 

1 n 1 
K(z,w) = - IT (1 )2' 1Tn - z·w· 

j=1 J 1 

1 n 1 
S(z,w) = -(21T-)n P -:-:"(l---z-.W-:"".) 

1=1 1 J 

bounded symmetric domain: In this case, the Bergman kernel can be ex­
pressed in terms of the Jordan algebraic structure associated with bounded 
symmetric domains as follows: 

K(z,w) = cdetB(z,w)-1 

where B(x, y) is the "Bergman operator". This description ofthe Bergman 
kernel can be found in [48] and [21], see also [57]. Formulas for these kernels 
can be found in [29], see [15]. 

1.4. Problems of Interest 

For small Hankel operators on the Hardy space 1{2 or the Bergman space A2 we 
shall be interested in the following natural questions. 

1. For which symbols f is hf bounded? 
2. For which symbols f is h f compact? 
3. For which symbols f does hf belong to some Schatten-von Neumann class 

Sq, 0 < q < oo? 

For a given domain, the above list implies that there are six questions of 
interest, three for the Hardy space and three for the Bergman space. In the case of 
the Bergman space, all of these problems have been essentially solved except for 
the third one in the case of a strongly pseudoconvex domain, see Table 2 below. 
In particular, all three questions have been answered for the Bergman space of a 
bounded symmetric domain and therefore for the Bergman space of the unit ball 
and of the unit polydisk. 

On the contrary, all three problems are completely open in the case of the 
Hardy space of a bounded symmetric domain, and one of them (see Table 1) is 
open in the particular cases of the unit polydisk and a strongly pseudo convex 
domain. 

The above discussion is summarized in the following two tables, whose en­
tries show the appropriate authors and year of publication for the solution of 
the problem associated with the entry. We have used the abbreviation SpeD for 
strongly pseudoconvex domain and BSD for bounded symmetric domain. An entry 
in parentheses means it was initially proved in a more general context. The author 
apologizes if there are some other references that should have been included here 
which have been overlooked. 
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Table 1: Problems on the Hardy space 

bounded compact Schatten 
unit disk Nehari 57 Hartman 58 Peller 80 

Coifman Coifman Feldman 
unit ball &Rochberg &Rochberg & Rochberg 90 

& Weiss 76 & Weiss 76 Zhang 91 
unit polydisk Lin-Russo 95 Lin-Russo 95 OPEN 

SPCD Krantz-Li 95 Krantz-Li 95 OPEN 
BSD OPEN OPEN OPEN 

Table 2: Problems on the Bergman space 

bounded compact Schatten 
Janson Janson J anson,Rochberg 

unit disk & Rochberg & Rochberg & Peetre 87; Arazy 
& Peetre 87 & Peetre 87 Fisher & Peetre 88 

Coifman Coifman Feldman 
unit ball &Rochberg &Rochberg & Rochberg 90 

& Weiss 76 & Weiss 76 Burbea 87-unpub. 
unit polydisk (Zhu 95) (Zhu 95) (Zhu 95) 

SPCD Coupet 89 Coupet 89 OPEN 
BSD Zhu 95 Zhu 95 Zhu 95 

In contrast to the Hardy space case, the theory of the small Hankel operator 
on the Bergman space is fairly complete. The following is an elaboration of Table 2. 

unit disk: Boundedness and compactness have been characterized in terms of 
Bloch and little Bloch spaces in [31], and trace ideal criteria were worked 
out in terms of Besov spaces in [3],[31] and in [10]. 

unit ball: Boundedness and compactness criteria have been established in 
[17]. Trace ideal criteria are established in the unpublished paper [11], 
and are obtained as a consequence of the Hardy space theory in [24]. 

strongly pseudo convex domain: Boundedness and compactness have been 
characterized in terms of Bloch and little Bloch spaces in [20]. The trace 
ideal criteria have not been done up to now, but there are some sufficient 
conditions in this case, as well as in the case of finite type domains in 
en (convex if n > 2). Since the small Hankel operator is "dominated" by 
the big Hankel operator (see for example [36]), the work in the 1990s on 
the latter, for example [7],[40],[42], [38],[50], [51],[43],[44],[58], automati­
cally give sufficient conditions for each of the three problems of interest. 
Finding conditions which are both necessary and sufficient for the small 
Hankel operator, and for the big Hankel operator for p < 2 has proved 
difficult to achieve, however see [44]. In this context there is also a a useful 
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relation between Bergman space results and Hardy space results in one 
higher dimension, see [37] and [58] for example. 

bounded symmetric domain: A complete theory of boundedness, compact­
ness, and trace ideal criteria have been established in [65]. 

The theory of the big Hankel operator differs significantly from that of the 
small Hankel operator. For example, there are cut-off phenomenon, going back to 
the setting of R n in [30]. In more than one variable, the references below represent 
work which appeared in print after 1990. 

The big Hankel operator on the Hardy space has been studied in at least two 
contexts, the unit ball [24] and the unit polydisk [19]. There does not seem to be 
any other references which study the big Hankel operator on Hardy spaces over 
domains more general than the unit ball and unit polydisk. 

On the Bergman space there is more activity. The types of problems con­
sidered in this paper for the small Hankel operator have been studied for the big 
Hankel operator in the following works, which however will not be discussed here. 
In some cases, the operator in question is more general than the Hankel operator 
defined here. The author apologizes if some relevant references have been over­
looked. In addition to the above references for strongly pseudoconvex domains, we 
also have [5],[3] for the unit disk, [4],[63],[59],[50] for the unit ball, [41],[64] for the 
unit polydisk, and [6],[61],[2] for bounded symmetric domains. 

2. The small Hankel operator on the Hardy space of the unit ball 

2.1. The unit disk 

Let ~ be the open unit disk in C with normalized Lebesgue measure dA, and 
T = a~ the unit circle with normalized arc length measure dO". Let '}{P = '}{P(~) 
be the Hardy space for p 2: 1, and let S : L2(T, dO") ----> 1-{2 be the orthogonal 
projection. For holomorphic f, the small Hankel operator h f on '}{2 is defined by 

hf 9 = SUg), 9 E '}{2, f9 E L 2 (T,dO"). 

We know by the theorems of Nehari and Hartman respectively, that hf is 
bounded or compact if and only if f E BMOA or f E VMOA (see [62, Chapter 9] 
for details or [47] for a summary of this). Let Sp be the Schatten class of operators 
on '}{2. The following well known theorem due to Peller [49] characterizes those 
holomorphic functions f for which hf ESp. 

Theorem 2.1. Let f be a holomorphic function on ~, and p 2: 1. Then hf ESp if 
and only if 

For a detailed proof, see [62, Chapter 9]. 
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2.2. Boundedness and Compactness 

Let B = be the unit ball in en, and let a denote Lebesgue area measure on 
aBo Recall that the Hardy space 1{P(B) consists of all holomorphic functions 
F : B --+ e satisfying 

IIFII~ = sup r IF(rz)IP da(z) < 00. 
O<r<IJaB 

The space BMO(B) is defined as the space of functions b : aB :--+ e such 
that 

IlbllBMO = s~p 1~11s Ib(y) - ms(b)1 da < 00 

where S runs over all spheres in aB with respect to the metric 11 - z· wll/2, and 
ms(b) = Is bda/ISI· 

The following three theorems form a pattern which can be used in various 
contexts. For the unit ball, they are contained in [17] 

Theorem 2.2 (Factorization). Every F E 1{1(B) can be written F = Ei GiHi, 
where Gi,Hi E 1{2(B) and E IIGi11211Hi112:::; cIIFIII. 
Theorem 2.3 (Boundedness). For f E 1{2(B), if hf denotes the small Hankel op­
erator, then 

hf E B(1{2(B)) ¢:} f E BMOA(B). 

The space VMO = VMO(B) consists of those functions b E BMO(B) for 
which 

lim lSI I r Ib - ms(b)1 da = 0, 
ISI--+o J s 

and the space V MOA(B) denotes the BMO-closure of the analytic polynomials. 
We have the duality relations: 

VMOA* = 1{1 1{1* = BMOA. 

Theorem 2.4 (Compactness). For f E 1{2(B), if hf denotes the small Hankel op­
erator, then 

hf is compact ¢:} f E VMOA(B). 

The results of this subsection have been proved in the setting of a bounded 
strongly pseudo convex domain in en with smooth boundary, as well as a bounded 
pseudo convex domain of finite type in e2 in [34]. This work, as well as [35] has 
established the foundation for harmonic analysis on domains in several complex 
variables, and the results obtained, about Hardy spaces, BMO, Hankel operators, 
had been sought for fifteen years or more. 



The small Hankel operator in several complex variables 243 

2.3. Trace Ideal Criteria 

The problem of Schatten class membership has a history going back to 1980, but 
when restricted to the small Hankel operator on Hardy space, it has only been 
solved for the unit ball in one or several complex variables. More precisely, Peller, 
in [49] proved that the Hankel operator on the Hardy space of the unit disk belongs 
to the Schatten p-class Sp if and only if the symbol belongs to the Besov space 
BP, 1 ~ p < 00 (see 2.4). A similar theorem was obtained for the upper half plane 
in e by Coifman and Rochberg [16] for p = 1 and by Rochberg [52] for p > 1. 

In more than one variable, there are two papers which prove the correspond­
ing result for the open unit ball, namely Feldman and Rochberg [24] and Zhang 
[60]. The former involves the techniques of harmonic analysis on the Heisenberg 
group as well as the notion of nearly weakly orthonormal sequences [53], [54]. The 
latter involves duality of Bergman spaces and complex interpolation theory. These 
two papers show the richness of the problem and provide ideas for generalizations 
to domains other than the unit ball. For completeness, we state the result here. 

Theorem 2.5. Let f be a holomorphic function on the unit ball B in en and let 
p ~ 1. Then the small Hankel operator hf belongs to the Schatten class Sp over 
the Hardy space 1{2(B) if and only if 

L 11 a~:: IP 
(1 _lzI 2)(p-l)(n+l) dV(z) < 00. 

lal=n+l B 

2.4. Hankel operators in the Dixmier class 

Let H be a Hilbert space over C. For 0 < p < 00, recall that T E Sp(H) (Schatten­
von Neumann p-class) if {JLn(T)}~=1 E lP, where the JLn(T) are the eigenvalues of 
ITI = (T*T)I/2. 

An important class of operators which lies between SI(H) and S1+£(H) is 
the Macaev ideal St(H) (also denoted by L(I,oo)(H)), which we shall call the 
Dixmier class, cf. [18]. We say that T E St(H) if {O'n/logn}~=2 E loo where 
O'n = 2:.;=1 JLj(T). This class was used in 1966 by Dixmier, see [18, p. 303] or 
[8, p. 5408], to settle in the negative the question of the uniqueness of the trace 
on £(H). We mention that st is a Banach space under the norm: IITlls+ = 

1 

sUPn~2{O'n(T)/ log n}. 
More recently, J. Bellissard and co-workers have connected Hankel operators 

on the Hardy space of the unit disk with their study of the quantum Hall effect 
[8], thereby proposing the following question: What is the holomorphic function 
space which consists of precisely the symbols of Hankel operators belonging to the 
Dixmier class st? An answer to this question is given in [45] as follows. 

Recall that for 1 ~ p < 00, BP(n) denotes the holomorphic Besov space over 
a domain n in en, with the seminorm II·IIBP defined as follows: 

Ilfll~p = In If(n+l)(zWK(z,z)I-P dV(z), If(n+l) (z)1 = L la;:~fl· 
1.BI=n+l 
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For each a > 0, we let dVa(z) = ca(1-lzI2)a-1dV(z) where dV is Lebesgue 
volume measure, and Io dVa = 1. Let A~(O) denote the weighted Bergman space 
on 0 and Pa : L2(0, dVa ) ~ A~(O) the Bergman projection with Bergman kernel 
K~(z) = Ka(z, w) = ca (1- z· u!)-n-a. Note that, as a limiting case, a = 0 gives 
rise to the Hardy space. 

For a domain 0 c en, we say that a holomorphic function f over 0 belongs 
to B~(O) if, 

r If(n+1)(z)1 
IlfIIBt(o) = io 1 + IlogF(J)ldV(z) < 00, 

Then we have the following theorem. 

Theorem 2.6. Let a 2 0 and let f E 1f.2(B), where B is the unit ball. Then 

(i) hI E St(A~(B)) if and only ifsuPI<p::;2 {(p -l)llfll~p} < 00. 

(ii) If f E B~(B), then hj E St(A~(B)). 

(iii) If hj E St(A~(B)), then for any p E (1,2), 

llf(n+1)(z)l(l + IlogF(J)I)(l + log(l + IlogF(J)I))-PdV(z) < 00. 

By using the results on the boundedness and compactness of hf in [34], [58] 
and the asymptotic expansion of the Bergman and Szego kernels given in [22], one 
can prove Theorem 2.6 in the case of a smoothly bounded strictly pseudoconvex 
domain in en. This remark can also apply to other domains in en, such as bounded 
symmetric domains, by using the results proved in [65]. 

3. The small Hankel operator on the Hardy space of the bidisk 

The problem of boundedness and compactness in this setting has been discussed 
in [47], where sufficient conditions are given, based on the study of multiparam­
eter Fourier analysis done in [13]. A survey of these theorems on the unit disk 
(Theorems of Nehari and Hartman) as well as on the unit ball in several com­
plex variables (Theorems of Coifman-Rochberg-Weiss) is given in [47, 1.1]. As in 
[17], a proof of boundedness could be based on a factorization theorem and a 
proof of compactness could be based on factorization and a duality between HI 
and V MOA on the bidisc. The work in [46, Theorem 2.3] proves a factorization 
theorem for atoms but the proof for a general HI function, as stated there, is in­
complete. The author is grateful to Aline Bonami for bringing this to his attention. 
Thus, the subtle question of whether the sufficient conditions for boundedness and 
compactness are also necessary is, as with HI-factorization, still an open problem. 

The unit ball in en is an example of a bounded symmetric domain and of a 
strongly pseudoconvex domain. For the small Hankel operator on the Hardy space 
in these contexts (other than for the unit disk or unit ball), the only criteria on 
boundedness and compactness are those of Krantz-Li for strongly pseudoconvex 
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domains [34]. It should be noted that some sufficient conditions for the bounded­
ness, compactness, and belonging to a Schatten class are proved in [58] in the case 
of a bounded pseudo convex domain of finite type in C 2 with smooth boundary. 
Moreover, for a general strongly pseudo convex domain, necessary and sufficient 
conditions are proved in [9], which also considers the problem in the setting of 
complex ellipsoids. 

To summarize then, there are three ingredients needed for a theorem of N ehari 
type on the Hardy space of a domain. Namely, 

• duality of H1 with BMO 
• atomic decomposition of H1 
• factorization in H1 

As already noted, these results are known for the unit disk (Fefferman, Coif­
man), unit ball (Coifman-Rochberg-Weiss), and strongly pseudoconvex domains 
(Krantz-Li). For the polydisk, the first two are known (Chang-Fefferman). In this 
section we give an exposition in the case of the polydisk, and in the process correct 
some inaccuracies in [47] and [46]. 

3.1. Multiparameter Harmonic Analysis 

Hardy spaces of the bidisc 

We denote by rj(Oj) a standard cone in the unit disc ~ with vertex at 
ei()j E T, that is, for j = 1,2, 

rj(Oj) = {Zj E ~ : 11- zje-i()j 1 < 1 -Izjl}, 

and we set, for 0 = (01 , ( 2 ) E T2, 

r(O) = r 1(01) x r 2(02) 

For a measurable function u on ~ 2 , let N (u) (0) be the unrestricted nontan­
gential maximal function, 

N(u)(O) = sup lu(z)l, 
zEr«() 

and let A(u) denote the area integral of u, that is, 

A2(u) = Ai2(U) + Ai(u) + A~(u) + lu(O)12 , 

where 

A~(u)(O) = ( 1\72U(O, z2)1 2 dz2 , 
Jr2«()2) 

and dZj is Lebesgue measure on ~, dz = dz1dz2 . 
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We shall be dealing with functions u which are harmonic in each variable: 
Lllu = Ll2u = o. For such a function, it is known ([26, Th.l]) that for 0 < p < 00, 

N(u) E LP(T) if and only if A(u) E LP(T), and the space HP(Ll2) is defined to 
be the set of functions u harmonic in each variable, such that this condition is 
satisfied. The space HP is normed as follows: 

which are equivalent. We let f denote the boundary distribution of u and identify u 
with f when convenient. It is noteworthy that the usual holomorhic Hardy spaces 
defined in section 1.2 and denoted here by H~(Ll2), are included in these spaces; 
H~(Ll2) C HP(Ll2). 

There is a companion result which deals with the bi-upper half-plane D = 
R! x R!. For x = (XbX2) E R2, let 

r(x) = r(Xl) x r(X2) = {(Yl, tl, Y2, t2) : IXl - Yll < h, IX2 - Y21 < t2}. 

Let u(x, t) be harmonic in each variable (Xj, tj) (j = 1,2) and denote by u* the 
nontangential maximal function 

U*(XbX2) = sup IU((Ybtl,Y2,t2)1, 
(y,t)er(x) 

and Su the square function 

S2(u)(x) = f lV'lV'2U(y,t)12dYldY2dtldt2. 
ir(x) 

For a function f : R2 ~ C, let u(x, t) = P[f] (x, t) be its bi-Poisson integral. 
Then, for 0 < p < 00, by definition, f belongs to HP(D) if u* E V(R2). It is 
known that this is the case if and only if S(u) E LP(R2 ) ([23, pp.103-l09]). As 
above, H~ (D) c HP(D) and IlfllHP is given by either of the equivalent norms 
lIu*IILP or IISuIlLP. 

The space Hl(D) will be of special interest to us. It is defined as 

Hl(D) = {u: u harmonic on D, u* E Ll(R2)} 
= {f: f defined on R2,u = Poisson integral of f,r = u* E Ll(R2)}. 

It is proved in [13, Th.l] that 

Hl(D) = {f = LAkak,ak atoms, L IAkl ~ AllfIIHl}. (1) 

Atoms will be defined below in subsection 3.2. Equation (1) is the atomic decom­
position of Hl and will be discussed further below. 

Duality of Hl with BMO on the bidisc 

By the combined efforts of A. Chang and R. Fefferman, the following three 
conditions serve as criteria for a function cp to belong to BMO in the multiparam­
eter setting. We state only the bidisc version. 
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Theorem 3.1. Let ep : T2 -+ C. Then ep E BMO(T2) if one of the following 
equivalent conditions holds: 

(i): ep E (HI)*, that is 

If fepl ::; IIepllBMOIIIIIHl. 

(ii): ep E Loo + H1£C'O +H2LOO + HI H2 Loo , where Hj is the Hilbert tronsform 
in the variable Zj. 

(iii): If u = P[ep] and 0 C T2 is an open set, then 

r 'V'1V'2U,2 l0g _,1, log-, 1, dA(ZI)dA(Z2)::; GlO" 
18(0) Zl Z2 

where 8(0) = {(Zl. Z2) E t::,.2 : IZl x IZ2 cO}. 

It is now a simple matter to obtain a holomorphic duality theorem, correcting 
an omission in [47]. Let BMOA(t::,.2) = H~(t::,.2) n BMO(T2). 

Theorem 3.2. BMOA = (Hi)*. 

Proof. Let i E (Hi)*. Then i(f) = J 19 for some 9 E Loo. For 1 E H~, 
i(f) = J 19 = J 18g, where 8 is the Szego projection from L2 onto Hl Now 
8g E 8(Loo)nH~ = BMOA, since 8(Loo) c BMO by virtue ofthe relation of the 

Szego projection and Hilbert transform in one variable: 81 = (iHI + 1 - j(0))/2. 
Conversely, if 9 E BMOA, then for 1 E H~ cHi, 

If 191 ::; CIIIIIHl IIgllBMO. 

Let 7r : BMOA -+ (Hi)* be the map 7r(g) = i g • By the above arguments, 7r 
is linear and onto. To show that it is one-to-one, suppose 7r(gl) = 7r(g2). Then for 
any f E L2(T2), 

J g(g1 - 92) = (f,g1 - g2)L2 = (81,g1 - 92)£2 = 0 

since 81 E Hl Thus g1 = g2, and since BMOA is complete, by the open mapping 
theorem and the inequality 117r(g) 'I ::; CII911BMO, the norms 117r(g)II and IIgllBMO 
are equivalent. 0 

3.2. Factorization of an atom on the bidisc 

In this subsection we first elaborate on the atomic decomposition (1). 
We work in the context first of the bi-upper half plane D. An atom is a 

function a = a(xl. X2) on the Shilov boundary R2, supported in an open set 0 of 
finite measure, which satisfies the following conditions: 

1. IIall£2 ::; ,0,-1/2 
2. a has mean zero over every component interval of every xrcross section 

of 0 
3. a is further decomposed into "elementary particles" a = LR aR where 
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(a): Each aR is supported on a rectangle R C S1 with R ct 3R' for any 
R i= R' in the sum 

(b): II. aR(x) dXj = 0, R = It X 12 
J 

(c): aR satisfies 

• lIaRlloo ~ cRIRI-I/2 
• 118aR/8xjlloo ~ cRllj l-IIRI-I/2 
• 1182aR/8x18x211oo ~ cRIRI-3/ 2 

where ER ck ~ AIS1I- I . 

With this definition of atom, one has the atomic decomposition (1) of Chang 
and Fefferman. It is natural to expect that (1) and Theorem 3.3 below would lead 
to a factorization theorem for an arbitrary element of HI, but as of this writing, 
this has not been proved. 

Theorem 3.3 (Theorem 2.3 of [46]). Let a be an atom. Then for each R in the 
decomposition a = ERaR, there exist Bj,Cj E H2(D) such that 

4 

S(aR) = LBjCj 
I 

and 
4 

L IIBjll211Cj l1 2 ~ CCRIRII/2. 
I 

Because all functions involved are holomorphic, the multivariable Cayley 
transform can be used to transfer Theorem 3.3 to the setting of the bidisc. More­
over, the factorization can be done for any p-atom for 0 < p ::; 1, as defined in [14], 
and in this case, the holomorphic component functions Bj , Cj belong to H2P. The 
corresponding factorization theorem for arbitrary elements of HP for this range of 
p, for the unit ball and for strongly pseudoconvex domains, were proved in [25] 
and [34] respectively. 
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