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The small Hankel operator in several complex
variables

Bernard Russo

Abstract. A survey of known results and open problems concerning bounded-
ness, compactness, and trace ideal membership of the small Hankel operator.
The setting is either the Bergman or Hardy space over a bounded symmetric
domain or a strongly pseudoconvex domain in several complex variables, with
special attention to the unit polydisk and multivariable harmonic analysis.

Acknowledgements: The author thanks Song-Ying Li for numerous dis-
cussions on Hankel operators.

This expository paper attempts to give the status of research on small Hankel
operators in several complex variables insofar as it is concerned with certain basic
problems for operators associated with a symbol. Although it is primarily about
small Hankel operators on Hardy spaces, the Bergman spaces and big Hankel
operators are also mentioned. Hankel operators, Toeplitz operators, and composi-
tion operators are at the center of the study of certain aspects of contemporary
operator theory in function spaces. For any of these operators, one can consider
the following problems: characterize the symbols for which the operator with that
symbol is bounded, compact, or in a Schatten p-class. In this note we consider
these problems for the small Hankel operator.

Hankel operators are of interest in pure and applied operator theory. They
appear in the following contexts, to name a few (for the first three, see [39]):

H* control theory (engineering)

interpolation problems (Nevanlinna-Pick,Caratheodory-Fejer)
approximation theory

noncommutative geometry (quantum Hall effect,[8])

8 equation ([1])

This paper contains three sections. Section 1 gives the background on the
types of function spaces, domains, and operators of interest, and poses the prob-
lems to be discussed in later sections. The literature for the Bergman space versions
of our problems is discussed here. In Section 2, the state of affairs regarding the
Hardy spaces of the unit ball is discussed. Also in that section, the known results
for the Hardy spaces of the unit disk are given. Most of these, as well as references
to results on more general domains, are given in the monograph [62] so they are
only mentioned briefly here without much discussion. Section 3 is an exposition
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of the multiparameter harmonic analysis as it applies to the study of the small
Hankel operator on the polydisk, which is also presented there.

1. Preliminaries

1.1. Bergman and Hardy spaces

Let 2 be a domain in C". The Bergman space is the set of all holomorphic functions
on ) which are p-integrable with respect to Lebesgue volume measure dV on

C" =R™
AP(Q) C IP(Q,dV)  0<p<co.

AP(Q) is a closed subspace of LP(f2,dV). When n = 1, we use the notation dA
for dV. The Hardy space HP(£2), 0 < p < oo, as well as the embedding HP(Q2) C
LP(09) are a little more complicated. We begin with three familiar cases. For any
function f and r > 0, let f.(z) = f(rz).

In the following, df/27 denotes normalized Lebesgue measure on the unit
circle T = 0A, o denotes a unique rotation invariant measure on the unit sphere
OB, where B is the unit ball in C", and in the case of the unit polydisk A",
r=(ry,---,7) and 8 = (0y,--- ,6,), with obvious meanings for 0 < r < 1 and
e in this case.

e ) = the unit disk: for a holomorphic function f on the unit disk A = {z €

C:lz|<1}and 0 <p< oo, f € HP(A) if

2
||f||§;{p= sup/ |fr(e®)|P d8/2m < .
0<r<1Jo

e () = the unit ball: for a holomorphic function f on the unit ball B = {z =
(z1,-+ ,z2) €C" 1 Y |21 < 1} and 0 < p < o0, f € HP(B) if

I fI5, = sup |7 (Q)[P do(¢) < 0.
H o<r<1JOB

o Q) = the unit polydisk: for a holomorphic function f on the unit polydisk
A" CC"and 0 <p< oo, f € HP(A"™) if

s = sy [ 15 - o) <

In each of the above cases, any HP function f has nontangential boundary
values f* almost everywhere, which belong to LP(912) , and the map

HP > f f* e LP(09)

is norm preserving ([28], [56], [55]). In fact, for any bounded domain in C™ with
C2-boundary, f* exists, see [33, Ch. 8]. Moreover, in the two cases considered

below, that is, bounded symmetric domains and strongly pseudoconvex domains,
the embedding HP(2) C LP(01) is an isometry.
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1.2. Domains of Interest

We shall limit our attention in this paper to two types of domains, namely, bounded
symmetric domains and especially the unit polydisk, and strongly pseudoconvex
domains. Before discussing the definitions, we show how the Hardy spaces are de-
fined in each case. For a summary of an algebraic approach to bounded symmetric
domains, see the survey paper [57].

A bounded symmetric domain can be defined as a domain in C™ which is the
open unit ball of a certain Banach space structure on C". This is because in finite
dimensions, the bounded symmetric domains have been classified, first using Lie
theory [12], and afterwards using Jordan theory [32], [48]. Namely, the underlying
Banach spaces of all finite dimensional bounded symmetric domains are contained
in the following list. We shall not specify the norms in the last three cases. For a
fuller discussion, see [48] or [57].

® M, »(C): rectangular m by n complex matrices with the operator norm
e S5,(C): symmetric n by n complex matrices with the operator norm

e A,(C): anti-symmetric n by n complex matrices with the operator norm
e Spin,,: the complex “spin factor” of dimension n

o [15: the “exceptional” complex Jordan triple system of dimension 16

o I57: the “exceptional” complex Jordan algebra of dimension 27

In particular, we obtain the unit disk, unit ball, and unit polydisk, from M i,
My, and My x My x -+ x My 1, respectively.

For any bounded symmetric domain €, there is a unique probability measure
o on the Silov boundary 0* = 0*QQ, which is invariant under the action of the
compact group of linear automorphisms of 2. Since Q is the open unit ball for a
norm on C", the following definition makes sense for a holomorphic function f on
Q ([27)).

For 0 <p < oo, f € H?(Q) if

I = s [ 1P do(¢) < o,

A strongly pseudoconvex domain €2 is given by a defining function p: C* —
(0,00) with certain properties which will not be mentioned here: Q = {2 € C™ :
p(z) < 0}. With §, defined by {p < —e¢}, the conditions on p guarantee the
existence of a surface area probability measure o on 9, so the following definition
makes sense ([33, Ch. 8]). For 0 < p < oo, f € HP(Q) if

1 =sup [ 18I dote) < o

The unit ball is an example of a bounded symmetric domain and of a strongly
pseudoconvex domain, the defining function given by p(z) = |2|? — 1.
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1.3. Operators of Interest

The Bergman space A2((Q) is a closed subspace of the Hilbert space L?(Q) and its
orthogonal projection (the Bergman projection) is given as an integral operator
with kernel K(z,w) (the Bergman kernel). We shall denote this projection by P,

Pf(z)=/9f(w)K(z,w)dV(w) , feL*N), zeq.

Similarly, the Hardy space H2((2) is a closed subspace of the Hilbert space
L?(09) and its orthogonal projection (the Szegd projection) is given as an integral
operator with kernel S(z,w) (the Szegd kernel). We shall denote this projection
by S,

z) = w)S(z,w)do(w 2 zeq.
51(2) an( )S(z,w)do(w), fe€L*(0R), z€Q

Let f: Q — C (say f € L?) and define formally the following:
Hankel operator H; : A2 — A2": ; Hpg=(I—P)(fg), g€ A2 fgeL?

Small Hankel operator h; : A2 — A% ; hsg = P(f3), g€ A2, fje L2

We make several remarks in connection with these definitions. The definitions
above are for the operators on the Bergman space with p = 2. There is a corre-
sponding Hardy space operator in each case; replace Q by 89, A% by H? and P
by S. Although these operators can also be defined on A? and H? for 0 < p < oo,
we shall restrict our attention to the Hilbert space case of p = 2. Both of these
operators are densely defined, and the small Hankel operators are conjugate lin-
ear. The small Hankel operator is essentially the same as the Hankel operator only
in the case of H2(A), because H?(A)' is one dimension away from H2(A). It is
sometimes convenient to consider these operators as acting from L? into L2,

The Bergman and Szegé projections are important tools in the study of oper-
ator theory in function spaces, and indeed are instrumental in the very definition
of Hankel operators. Let’s give some explicit formulas for the Bergman and Szegd
kernels in the cases of interest to us.

unit ball: ([33, p.60,66]),

K(z,w) = %W7
Sz w) = (n=1)! 1

2 (1 —z-w)"

strongly pseudoconvex domain: In this case, there is no explicit formula, but
an asymptotic expansion due to C. Fefferman [22] allows one to transfer
techniques known for the unit ball to this setting.
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unit polydisk: ([33, p.61,67]),

1 1
K(Zaw) - ;,,—L 1. (1 —Zjo')z’

j=1

S(z,w) = ! H !

(2m)n <=1 (1= 25w5)

bounded symmetric domain: In this case, the Bergman kernel can be ex-
pressed in terms of the Jordan algebraic structure associated with bounded
symmetric domains as follows:

K(z,w) = cdet B(z,w) ™"

where B(x,y) is the “Bergman operator”. This description of the Bergman
kernel can be found in [48] and [21], see also [57]. Formulas for these kernels
can be found in [29], see [15].

1.4. Problems of Interest

For small Hankel operators on the Hardy space H? or the Bergman space A% we
shall be interested in the following natural questions.

1. For which symbols f is hy bounded?

2. For which symbols f is h¢ compact?

3. For which symbols f does h¢ belong to some Schatten-von Neumann class
S¢, 0 < g < 00?

For a given domain, the above list implies that there are six questions of
interest, three for the Hardy space and three for the Bergman space. In the case of
the Bergman space, all of these problems have been essentially solved except for
the third one in the case of a strongly pseudoconvex domain, see Table 2 below.
In particular, all three questions have been answered for the Bergman space of a
bounded symmetric domain and therefore for the Bergman space of the unit ball
and of the unit polydisk.

On the contrary, all three problems are completely open in the case of the
Hardy space of a bounded symmetric domain, and one of them (see Table 1) is
open in the particular cases of the unit polydisk and a strongly pseudoconvex
domain.

The above discussion is summarized in the following two tables, whose en-
tries show the appropriate authors and year of publication for the solution of
the problem associated with the entry. We have used the abbreviation SPCD for
strongly pseudoconvex domain and BSD for bounded symmetric domain. An entry
in parentheses means it was initially proved in a more general context. The author
apologizes if there are some other references that should have been included here
which have been overlooked.
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Table 1: Problems on the Hardy space

bounded compact Schatten
unit disk Nehari 57 Hartman 58 Peller 80
Coifman Coifman Feldman

unit ball &Rochberg | &Rochberg | & Rochberg 90

& Weiss 76 | & Weiss 76 Zhang 91

unit polydisk | Lin-Russo 95 | Lin-Russo 95 OPEN
SPCD Krantz-Li 95 | Krantz-Li 95 OPEN
BSD OPEN OPEN OPEN

Table 2: Problems on the Bergman space

bounded compact Schatten
Janson Janson Janson,Rochberg

unit disk | & Rochberg | & Rochberg | & Peetre 87; Arazy

& Peetre 87 | & Peetre 87 | Fisher & Peetre 88
Coifman Coifman Feldman

unit ball &Rochberg | &Rochberg & Rochberg 90

& Weiss 76 | & Weiss 76 | Burbea 87—unpub.

unit polydisk | (Zhu 95) (Zhu 95) (Zhu 95)
SPCD Coupet 89 | Coupet 89 OPEN
BSD Zhu 95 Zhu 95 Zhu 95

In contrast to the Hardy space case, the theory of the small Hankel operator
on the Bergman space is fairly complete. The following is an elaboration of Table 2.

unit disk: Boundedness and compactness have been characterized in terms of
Bloch and little Bloch spaces in [31], and trace ideal criteria were worked
out in terms of Besov spaces in [3],[31] and in [10].

unit ball: Boundedness and compactness criteria have been established in
[17]. Trace ideal criteria are established in the unpublished paper [11],
and are obtained as a consequence of the Hardy space theory in [24].

strongly pseudoconvex domain: Boundedness and compactness have been
characterized in terms of Bloch and little Bloch spaces in [20]. The trace
ideal criteria have not been done up to now, but there are some sufficient
conditions in this case, as well as in the case of finite type domains in
C™ (convex if n > 2). Since the small Hankel operator is “dominated” by
the big Hankel operator (see for example [36]), the work in the 1990s on
the latter, for example [7],[40],[42], [38],[50], [51],(43],[44],[58], automati-
cally give sufficient conditions for each of the three problems of interest.
Finding conditions which are both necessary and sufficient for the small
Hankel operator, and for the big Hankel operator for p < 2 has proved
difficult to achieve, however see [44]. In this context there is also a a useful
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relation between Bergman space results and Hardy space results in one
higher dimension, see [37] and [58] for example.

bounded symmetric domain: A complete theory of boundedness, compact-
ness, and trace ideal criteria have been established in [65].

The theory of the big Hankel operator differs significantly from that of the
small Hankel operator. For example, there are cut-off phenomenon, going back to
the setting of R" in [30]. In more than one variable, the references below represent
work which appeared in print after 1990.

The big Hankel operator on the Hardy space has been studied in at least two
contexts, the unit ball [24] and the unit polydisk [19]. There does not seem to be
any other references which study the big Hankel operator on Hardy spaces over
domains more general than the unit ball and unit polydisk.

On the Bergman space there is more activity. The types of problems con-
sidered in this paper for the small Hankel operator have been studied for the big
Hankel operator in the following works, which however will not be discussed here.
In some cases, the operator in question is more general than the Hankel operator
defined here. The author apologizes if some relevant references have been over-
looked. In addition to the above references for strongly pseudoconvex domains, we
also have [5],[3] for the unit disk, [4],(63],[59],(50] for the unit ball, [41],(64] for the
unit polydisk, and [6],[61],(2] for bounded symmetric domains.

2. The small Hankel operator on the Hardy space of the unit ball
2.1. The unit disk

Let A be the open unit disk in C with normalized Lebesgue measure dA, and
T = JA the unit circle with normalized arc length measure do. Let HP = HP(A)
be the Hardy space for p > 1, and let S : L?(T,do) — H? be the orthogonal
projection. For holomorphic f, the small Hankel operator hy on H? is defined by

hig=S(fg), g€ H? fge L*T,do).

We know by the theorems of Nehari and Hartman respectively, that hy is
bounded or compact if and only if f € BMOA or f € VMOA (see [62, Chapter 9]
for details or [47] for a summary of this). Let S, be the Schatten class of operators
on H2. The following well known theorem due to Peller [49] characterizes those
holomorphic functions f for which hy € S,,.

Theorem 2.1. Let f be a holomorphic function on A, and p> 1. Then hy € Sp, if
and only if

[ 1 @pa - dac) < o
D

For a detailed proof, see {62, Chapter 9].
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2.2. Boundedness and Compactness

Let B = be the unit ball in C", and let ¢ denote Lebesgue area measure on
OB. Recall that the Hardy space HP(B) consists of all holomorphic functions
F: B — C satisfying

IFIp = sup. /a S IFra)P da(2) < oo,

o<r

The space BMO(B) is defined as the space of functions b : B :— C such
that

1
[blzst0 = sup - | o) = ms(B) do < o0
s ISl /s

where S runs over all spheres in B with respect to the metric |1 — z - @|'/2, and
mg(b) = [sbda/|S).

The following three theorems form a pattern which can be used in various
contexts. For the unit ball, they are contained in [17]

Theorem 2.2 (Factorization). Every F € HY(B) can be written F = ¥, G;H;,
where G;, H; € H2(B) and 3 ||Gi|l2|Hill2 < | F|1.

Theorem 2.3 (Boundedness). For f € H2%(B), if hy denotes the small Hankel op-
erator, then

h; € B(H2(B)) & f € BMOA(B).

The space VMO = VMO(B) consists of those functions b € BMO(B) for
which

1
lim —/ b—mg(b)|do =0,
o8] J P s Ol

and the space VMOA(B) denotes the BMO-closure of the analytic polynomials.
We have the duality relations:

VMOA* = H! , H™ = BMOA.

Theorem 2.4 (Compactness). For f € H?(B), if hy denotes the small Hankel op-
erator, then

hy is compact & f € VMOA(B).

The results of this subsection have been proved in the setting of a bounded
strongly pseudoconvex domain in C™ with smooth boundary, as well as a bounded
pseudoconvex domain of finite type in C? in [34]. This work, as well as [35] has
established the foundation for harmonic analysis on domains in several complex
variables, and the results obtained, about Hardy spaces, BMO, Hankel operators,
had been sought for fifteen years or more.
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2.3. Trace Ideal Criteria

The problem of Schatten class membership has a history going back to 1980, but
when restricted to the small Hankel operator on Hardy space, it has only been
solved for the unit ball in one or several complex variables. More precisely, Peller,
in [49] proved that the Hankel operator on the Hardy space of the unit disk belongs
to the Schatten p-class S, if and only if the symbol belongs to the Besov space
BP 1 <p < o (see 2.4). A similar theorem was obtained for the upper half plane
in C by Coifman and Rochberg [16] for p = 1 and by Rochberg [52] for p > 1.

In more than one variable, there are two papers which prove the correspond-
ing result for the open unit ball, namely Feldman and Rochberg [24] and Zhang
[60]. The former involves the techniques of harmonic analysis on the Heisenberg
group as well as the notion of nearly weakly orthonormal sequences [53], [54]. The
latter involves duality of Bergman spaces and complex interpolation theory. These
two papers show the richness of the problem and provide ideas for generalizations
to domains other than the unit ball. For completeness, we state the result here.

Theorem 2.5. Let f be a holomorphic function on the unit ball B in C™ and let
p > 1. Then the small Hankel operator hy belongs to the Schatten class S, over
the Hardy space H?(B) if and only if

/ alelf|?
B

(1 — |z]2) - DD gy (2) < .
0z
2.4. Hankel operators in the Dixmier class
Let H be a Hilbert space over C. For 0 < p < 00, recall that T € S,(H) (Schatten-
von Neumann p-class) if {u,(T)}32, € ¢P, where the u,(T') are the eigenvalues of
|T| = (T*T)"/2.

An important class of operators which lies between S1(H) and Sq14+(H) is
the Macaev ideal S; (H) (also denoted by L(1:*)(H)), which we shall call the
Dixmier class, cf. [18]. We say that T € St (H) if {0,/logn}2, € £>° where
0n = 35y #§(T). This class was used in 1966 by Dixmier, see [18, p. 303] or
[8, p. 5408], to settle in the negative the question of the uniqueness of the trace
on L(H). We mention that Sf is a Banach space under the norm: ||T| sy =

sup,>2{on(T)/logn}.

More recently, J. Bellissard and co-workers have connected Hankel operators
on the Hardy space of the unit disk with their study of the quantum Hall effect
(8], thereby proposing the following question: What is the holomorphic function
space which consists of precisely the symbols of Hankel operators belonging to the
Dixmier class S;? An answer to this question is given in [45] as follows.

Recall that for 1 < p < 0o, BP(€2) denotes the holomorphic Besov space over
a domain Q in C", with the seminorm | - || g» defined as follows:

1715 = /QIf("“)(Z)I”K(z,2')1"”dV(Z), FeE) = Y

|Bl=n+1

|a|=n+1

an+1 f
028
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For each a > 0, we let dV,(2) = ca(1 — |2|2)*~1dV (2) where dV is Lebesgue
volume measure, and [ dV, = 1. Let A%(Q2) denote the weighted Bergman space
on Q and P, : L%(,dV,) — A%(Q) the Bergman projection with Bergman kernel
K$(2) = K%(z,w) = ¢o(1 — z- W)~ ™. Note that, as a limiting case, a = 0 gives
rise to the Hardy space.

For a domain 2 C C", we say that a holomorphic function f over {2 belongs
to BL(Q) if,

gy = [ 7L )
B ™ Jo T+ log F(f)]
Then we have the following theorem.
Theorem 2.6. Let oo > 0 and let f € H%(B), where B is the unit ball. Then

(i) b € ST (A(B)) i and only if supycper {(p —~ DIfI15 } < o0.

(ii) If f € BL(B), then h§ € ST (A2%(B)).

(iii) If h§ € ST (A%(B)), then for any p € (1,2),

/B £ (2|1 + log F())(1 + log(1 + |log F(F)]) dV (z) < .

1+|f00(z)]

dV(z) < oo, F(f)= e

By using the results on the boundedness and compactness of hy in [34], [58]
and the asymptotic expansion of the Bergman and Szego kernels given in [22], one
can prove Theorem 2.6 in the case of a smoothly bounded strictly pseudoconvex
domain in C™. This remark can also apply to other domains in C", such as bounded
symmetric domains, by using the results proved in [65].

3. The small Hankel operator on the Hardy space of the bidisk

The problem of boundedness and compactness in this setting has been discussed
in [47], where sufficient conditions are given, based on the study of multiparam-
eter Fourier analysis done in [13]. A survey of these theorems on the unit disk
(Theorems of Nehari and Hartman) as well as on the unit ball in several com-
plex variables (Theorems of Coifman-Rochberg-Weiss) is given in [47, 1.1]. As in
[17], a proof of boundedness could be based on a factorization theorem and a
proof of compactness could be based on factorization and a duality between H'!
and VMOA on the bidisc. The work in [46, Theorem 2.3] proves a factorization
theorem for atoms but the proof for a general H! function, as stated there, is in-
complete. The author is grateful to Aline Bonami for bringing this to his attention.
Thus, the subtle question of whether the sufficient conditions for boundedness and
compactness are also necessary is, as with H-factorization, still an open problem.

The unit ball in C” is an example of a bounded symmetric domain and of a
strongly pseudoconvex domain. For the small Hankel operator on the Hardy space
in these contexts (other than for the unit disk or unit ball), the only criteria on
boundedness and compactness are those of Krantz-Li for strongly pseudoconvex
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domains [34]. It should be noted that some sufficient conditions for the bounded-
ness, compactness, and belonging to a Schatten class are proved in [58] in the case
of a bounded pseudoconvex domain of finite type in C? with smooth boundary.
Moreover, for a general strongly pseudoconvex domain, necessary and sufficient
conditions are proved in [9], which also considers the problem in the setting of
complex ellipsoids.

To summarize then, there are three ingredients needed for a theorem of Nehari
type on the Hardy space of a domain. Namely,

e duality of H! with BMO
e atomic decomposition of H!
o factorization in H?!

As already noted, these results are known for the unit disk (Fefferman, Coif-
man), unit ball (Coifman-Rochberg-Weiss), and strongly pseudoconvex domains
(Krantz-Li). For the polydisk, the first two are known (Chang-Fefferman). In this
section we give an exposition in the case of the polydisk, and in the process correct
some inaccuracies in [47] and [46].

3.1. Multiparameter Harmonic Analysis
Hardy spaces of the bidisc

We denote by I';(6;) a standard cone in the unit disc A with vertex at
e% € T, that is, for j = 1,2,
j(6;) = {z € At 1 - ze™™| <1 ]},
and we set, for 8 = (81, 6,) € T?,
() =T1(61) x Ta(82)

For a measurable function u on A2, let N(u)(d) be the unrestricted nontan-
gential maximal function,

N(u)(6) = sup |u(z)},
z€Il'(6)

and let A(u) denote the area integral of u, that is,
A*(u) = Afp(v) + Af(w) + A3(w) + [u(O)]?,

where
A2,(u)(6) = / V1 Vau(z) 2 dz,
T'(0)

A2(u)(6) = / V1u(z1, 0)[2 daa,
r'1(61)

A3(u)(6) = / IV2u(0, 25)[2 dzs,
2(62)

and dz; is Lebesgue measure on A, dz = dz1dz,.
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We shall be dealing with functions u which are harmonic in each variable:
Aju = Agu = 0. For such a function, it is known (|26, Th.1]) that for 0 < p < o0,
N(u) € LP(T) if and only if A(u) € LP(T), and the space HP(A?) is defined to
be the set of functions » harmonic in each variable, such that this condition is
satisfied. The space H? is normed as follows:

lullre = IN(u)llLe or | A(u)]Le,

which are equivalent. We let f denote the boundary distribution of u and identify u
with f when convenient. It is noteworthy that the usual holomorhic Hardy spaces
defined in section 1.2 and denoted here by H?(A?), are included in these spaces;

HY(A?) C HP(A?).

There is a companion result which deals with the bi-upper half-plane D =
R2 x R3. For z = (z1,73) € R?, let

[(z) =T(z1) x T(z2) = {(y1, 21,42, 22) : |21 — 11| < t1, |72 — y2| <t2}.
Let u(z,t) be harmonic in each variable (z;,t;) (7 = 1,2) and denote by u* the
nontangential maximal function

u*($1,$2) = sup |U((y17t1,y2,t2)|,
(y,t)eT(x)

and Swu the square function
S2(w)(z) = / . V1V auly, £)|? dysdyadt ds.
INE

For a function f : R2 — C, let u(z,t) = P[f](z,t) be its bi-Poisson integral.
Then, for 0 < p < oo, by definition, f belongs to HP(D) if u* € LP(R?). It is
known that this is the case if and only if S(u) € LP(R?) ([23, pp.103-109]). As
above, HY (D) C HP(D) and | f||u» is given by either of the equivalent norms
w20 of ISl

The space H*(D) will be of special interest to us. It is defined as
HYD) = {u:u harmonic on D,u* € L}(R?)}

{f : f defined on R? u = Poisson integral of f, f* = u* € L}(R?)}.

It is proved in [13, Th.1] that
HY(D)={f=_ Aak,ax atoms , Y _ |\¢| < A| f|lm}- (1)

Atoms will be defined below in subsection 3.2. Equation (1) is the atomic decom-
position of H! and will be discussed further below.

Duality of H! with BMO on the bidisc

By the combined efforts of A. Chang and R. Fefferman, the following three
conditions serve as criteria for a function ¢ to belong to BMO in the multiparam-
eter setting. We state only the bidisc version.
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Theorem 3.1. Let ¢ : T> — C. Then ¢ € BMO(T?) if one of the following
equivalent conditions holds:

(i): ¢ € (H')*, that is
! / fw‘ < lellzaolflls-

(i): p € L®°+H;L*°+ H,L*>®° + HiHy L™, where H; is the Hilbert transform
in the variable z;.
(iii): If u = Plg] and Q C T? is an open set, then

/ |V1V2u|? log — ! log — !
S@) Jal " Jzal

where S(Q) = {(z1,22) € A2: I, x I, C Q}.

dA(21)dA(z) < C|9,

It is now a simple matter to obtain a holomorphic duality theorem, correcting
an omission in [47]. Let BMOA(A?2) = H3(A?) n BMO(T?).

Theorem 3.2. BMOA = (H})*.

Proof. Let £ € (H})*. Then £(f) = [ fg for some g € L*®. For f € H3,
= [fg = [ fSg, where S is the Szegd projection from L? onto H3. Now
Sg € S(L*)NH% = BMOA, since S(L*®) C BMO by virtue of the relation of the
Szegd projection and Hilbert transform in one variable: Sf = (iHf + f — £(0))/2.
Conversely, if g € BMOA, then for f € H% c H,

/ fﬁ‘ < Cliflmllglzro-

Let m: BMOA — (H})* be the map 7(g) = £,. By the above arguments, m
is linear and onto. To show that it is one-to-one, suppose 7(g;) = 7(g2). Then for
any f € L*(T?),

/9(91 —92)=(f,01—92)12 =(Sf,91 —92)12 =0

since Sf € HZ. Thus g; = go, and since BMOA is complete, by the open mapping
theorem and the inequality ||7(g)|| < C|lg||Bmo, the norms ||7(g)| and ||g|lBrmo
are equivalent.

3.2. Factorization of an atom on the bidisc

In this subsection we first elaborate on the atomic decomposition (1).

We work in the context first of the bi-upper half plane D. An atom is a
function a = a(z1,z2) on the Shilov boundary R2, supported in an open set Q of
finite measure, which satisfies the following conditions:

L |laflz2 < |71/2

2. a has mean zero over every component interval of every z;-cross section

of Q
3. a is further decomposed into “elementary particles” a = ), ap where
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(a): Each ag is supported on a rectangle R C Q with R ¢ 3R’ for any
R # R in the sum
(b): ij ar(z)dz; =0,R=1 x I
(€): ag satisfies
o llarlo < cr|R|7M?
* [10ar/0z;lo0 < cr|L;|*|R|M/?
e ||0%aRr /01102300 < cr|R|™%?
where 3" ¢k < A|Q|7L
With this definition of atom, one has the atomic decomposition (1) of Chang
and Fefferman. It is natural to expect that (1) and Theorem 3.3 below would lead

to a factorization theorem for an arbitrary element of H!, but as of this writing,
this has not been proved.

Theorem 3.3 (Theorem 2.3 of [46]). Let a be an atom. Then for each R in the
decomposition a = Y ap, there ezist B;,C; € H?(D) such that

4

S(ar) =Y _ B;C;

1

and
4
> " 1IBj2lIC;l2 < ccr|RM2.
1

Because all functions involved are holomorphic, the multivariable Cayley
transform can be used to transfer Theorem 3.3 to the setting of the bidisc. More-
over, the factorization can be done for any p-atom for 0 < p < 1, as defined in [14],
and in this case, the holomorphic component functions B;, C; belong to H?P. The
corresponding factorization theorem for arbitrary elements of H? for this range of
p, for the unit ball and for strongly pseudoconvex domains, were proved in [25]
and [34] respectively.
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